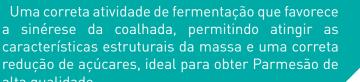
VIA LÁCTEA

Espalhando cultura pelo Brasil


DISTRIBUIÇÃO GRATUITA DA SACCO BRASIL LTDA. • ANO XVII • EDIÇÃO 76 • ABRIL | MAIO | JUNHO DE 2022.

SHL 090 G e SHL 092 G

Cultura composta por algumas cepas selecionadas e estudadas para produzir uma mistura balanceada de Bactérias Láticas Acidificantes que garantem:

Uma correta cinética de acidificação e liberação do complexo enzimático certo para obter a elasticidade e a textura típica do queijo Emmental.

Uma correta atividade de fermentação que permite atingir as características estruturais da massa e uma correta redução de açúcares, ideal para obter baixo índice de Browning.

alta qualidade.

Coalhos: algumas características importantes

A linha Clerici é composta por preparações enzimáticas de origem animal, com diferentes concentrações de quimosina e pepsina, de forma a atender às necessidades de coagulação e maturação de cada tipo de queijo. A atividade dessas preparações pode ser influenciada pela temperatura e pH do leite e pela quantidade de cloreto de cálcio adicionado. Esses parâmetros são usados para a compreensão da atividade coagulante e eventuais ajustes necessários sobre a tecnologia a ser adotada para cada queijo.

A composição da preparação

obtida partir da abomaso desses animais contém vertiginosamente.

Por definição, a Clerici entende que enzimas ricas tanto em composição coalho é a preparação enzimática como em atividade coagulante. As extração enzimas presentes são a quimosina de enzimas exclusivamente do e a pepsina, mas a principal delas é a abomaso de animais. Quando ainda quimosina. A medida que os animais jovens, alimentando-se apenas de crescem e passam a se alimentar colostro ou leite, esses ruminantes de ração, feno, grama etc., eles desenvolvem no estômago as desenvolvem os pré-estômagos enzimas capazes de degradar o fermentativos, e a produção de seu único alimento. Portanto, o quimosina dos abomasos diminui

Quimosina

É a enzima gástrica mais importante para a coagulação do leite. Os coalhos Clerici caracterizam-se por possuírem três quimosinas: A, B e C. Quando presente na preparação, em percentuais acima de 90%, ela permite obter:

- Maior rendimento de fabricação;
- Maior consistência do retículo de caseína;
- Tempo de coagulação mais preciso;
- Drenagem ideal e uma massa compacta;
- Secagem adicional do grão de coalhada.

Pepsina

A pepsina bovina, também chamada de Pepsina II ou A, é uma protease altamente ácida. Os coalhos Clerici caracterizam-se por possuírem 7 pepsinas: B, A.1-6. A presença delas nas preparações proporciona uma melhor formação de sabor e aroma no queijo, uma vantagem notável do ponto de vista sensorial. Há ainda uma tendência de aceleração do processo de maturação, com influência benéfica em diversos tipos de queijo.

Microelementos

Os coalhos Clerici também são ricos em certos oligoelementos que protegem as enzimas contra o ataque de substâncias inibidoras. A presença deles permite obter mais estabilidade das quimosinas e pepsinas, maior resistência à diluição com água clorada, além de prolongar a eficiência eficiência do coalho ao longo do tempo.

A força coagulante

Muitas empresas medem a forca coaqulante de sua preparação usando números e títulos comerciais. Entretanto, a força coaqulante dos coalhos é influenciada por elementos, como composição do leite, sensibilidade das enzimas às variações de pH, qualidade do leite etc. As unidades Soxhlet são definidas como sendo o volume de leite que uma preparação enzimática é capaz de coagular em 40 minutos a 35 °C.

A força é expressa como proporções, por exemplo, 1:15.000, ou seja, 1 15.000 mL de leite em 40 minutos na atualidade, dão apenas uma numa amostra com pH ajustado

noção da força. O único método para 6,50 relativa aos padrões científico aprovado para medir a de mL de coalho é capaz de coaqular forca de coaqulação de preparações da composição enzimática. Esse REMCAT enzimáticas a 35 °C. Com essa unidade é fácil Relative Milk Clotting Activity Test, as enzimas reagiriam da mesma para o queijeiro entender, mas especificado na International Dairy forma ela ainda é dependente do pH e Federation Standard 157:2007/ISÓ nas condições de teste. A força da qualidade do leite, além das 11815, que prevê o uso de IMCUs: medida pelos métodos da IDF variações pelo uso de padrões International Milk Clotting Units - é expressa em IMCU e indicada de referência. Com isso, a força IMCU mL-1. O princípio agora é que nos rótulos e fichas técnicas das em unidades Soxhlet, ainda usadas o tempo de coagulação é medido preparações comerciais.

referência método é muito robusto porque quaisquer

IMCU: Unidade Internacional de Coagulação do Leite

Uma unidade de coagulação do leite - U é definida como a quantidade da enzíma que coagula 10 mL de leite em pó desnatado reconstituído a 12%, a 30 °C, a pH 6,50 em 100 segundos. Contudo, o método REMCAT preconiza a necessidade do uso de 2 padrões: um apenas para quimosina e outro para pepsina, com força conhecida de 1000 IMCU. A força dos padrões em IMCUs é determinada fazendo-os reagir com um peptídeo sintético e a medição da taxa de proteólise. O título da amostra em exame, após a determinação do percentual enzimático relativo, é calculado em relação ao título dos padrões já conhecidos. Com esse método, portanto, a força do coalho é expressa por um número em IMCU. Á declaração da força da preparação, expressa em IMCU, deve ser sempre acompanhada da indicação da composição enzimática, ou seja, da relação quimosina/pepsina.

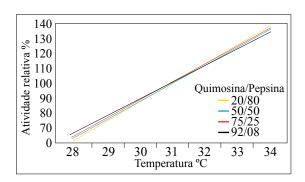
Do ponto de vista prático, é preciso considerar que há uma limitação na avaliação, pois a pepsina é mais proteolítica que a quimosina. Essa característica faz com que o padrão de 1000 IMCU de pepsina apresente um potencial coagulante menor do que o padrão de 1000 IMCU da quimosina. Como consequência, é possível que uma coalhada obtida com uma preparação de mesmo título de IMCU, porém com diferentes relações enzimáticas, apresente comportamento distinto. Na Tabela I, apresenta-se uma conversão aproximada entre diferentes unidades de atividade, em miligramas, de leite coagulado com diferentes enzimas. Na Tabela II, apresenta-se a quantidade de mililitros de preparação enzimática com diferentes proporções de quimosina e pepsina, necessária para coagular 100 litros de leite pasteurizado, em pH 6,50 com 16 g de CaCl₂ a 32 °C.

Tabela I: Conversão aproximada entre diferentes unidades de atividade, em miligramas, de leite coaqulado com diferentes enzimas.

	IMCU	Unidade Soxhlet	Unidade Renina
1 mg de quimosina A	291	1:24.400	168
1 mg de quimosina B	223	1:18.750	130
1 mg de pepsina	81	1:5.500	59
1 IMCU de quimosina A		1:85	0,58
1 IMCU de quimosina B		1:85	0,58
1 IMCU de pepsina		1:70	0,73

Tabela II: Mililitros de preparação enzimática com diferentes proporções de quimosina e pepsina, necessária para coagular 100 litros de leite pasteurizado, em pH 6,50 com 16 g de CaCl₂ a 32 °C.

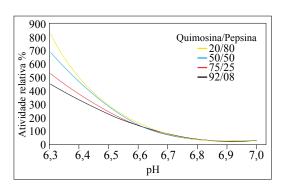
Força	Relação quimosina/pepsina										
IMCU/ml	100/0	96/4	80/20	70/30	60/40	50/50	40/60	30/70	20/80	10/90	0/100
50	56,00	58,10	66,40	71,60	76,80	82,00	87,20	92,40	97,60	102,80	108,00
100	28,00	29,00	33,20	35,80	38,40	41,00	43,60	46,20	48,80	51,40	54,00
150	18,70	19,40	22,10	23,90	25,60	27,30	29,10	30,80	32,50	34,30	36,00
200	14,00	14,50	13,30	14,30	15,40	16,40	17,40	18,50	19,50	20,60	21,60
250	11,20	11,60	13,30	14,30	15,40	16,40	17,40	18,50	19,50	20,60	21,60
300	9,30	9,70	11,10	11,90	12,80	13,70	14,50	15,40	16,30	17,10	18,00
350	8,00	8,30	9,50	10,20	11,00	11,70	12,50	13,20	13,90	14,70	15,40
400	7,00	7,30	8,30	9,00	9,60	10,30	10,90	11,60	12,20	12,90	13,50
450	6,20	6,50	7,40	8,00	8,50	9,10	9,70	10,30	10,80	11,40	12,00
500	5,60	5,80	6,60	7,20	7,70	8,20	8,70	9,20	9,80	10,30	10,80
550	5,10	5,30	6,00	6,50	7,00	7,50	7,90	8,40	8,90	9,30	9,80
600	4,70	4,80	5,50	6,00	6,40	6,80	7,30	7,70	8,10	8,60	9,00
650	4,30	4,50	5,10	5,50	5,90	6,30	6,70	7,10	7,50	7,90	8,30
700	4,00	4,10	4,70	5,10	5,50	5,90	6,20	6,60	7,00	7,30	7,70
750	3,70	3,90	4,40	4,80	5,10	5,50	5,80	6,20	6,50	6,90	7,20
800	3,50	3,60	4,20	4,50	4,80	5,10	5,50	5,80	6,10	6,40	6,80
850	3,30	3,40	3,90	4,20	4,50	4,80	5,10	5,40	5,70	6,00	6,40
900	3,10	3,20	3,70	4,00	4,30	4,60	4,80	5,10	5,40	5,70	6,00
1370	2,00	2,10	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3,80	3,90
1800	1,60	1,60	1,80	2,00	2,10	2,30	2,40	2,60	2,70	2,90	3,00


Tecnologia em Laticínios

Fatores que interferem na atividade:

Temperatura

A atividade aumenta com a elevação da temperatura de coagulação, conforme ilustrado no Gráfico I.


Gráfico I: Atividade relativa para diferentes tipos de coalho a temperaturas entre 28 e 34 °C assumindo 100% de atividade a 31 °C.

PH

Na faixa de pH normalmente utilizada para a produção de queijo, a atividade enzimática aumenta com a diminuição do pH ou aumento da acidez Dornic, conforme ilustrado no Gráfico II.

Gráfico II: Influência do pH na atividade relativa de diferentes preparações.

Concentração de proteínas

A padronização em proteínas a valores entre 32 a 40 g/L, além de permitir uma maior regularidade de fabricação, permite a obtenção de coágulos mais firmes que suportam melhor as operações tecnológicas aplicadas para favorecer a expulsão de soro.

Manuseio e uso de coalho e coagulantes

Embora a formulação de todos os coalhos e coagulantes comerciais ajudem a proteger a atividade enzimática durante o transporte, armazenamento e manuseio, a enzima ainda é suscetível à autodigestão e à contaminação por microrganismos. Alguns cuidados devem ser tomados:

- O armazenamento a frio, entre O e 8 °C, melhora significativamente a estabilidade dessas enzimas;
- Recomenda-se a diluição da preparação para a adição ao leite em água de boa qualidade, fria e livre de cloro, para facilitar a sua distribuição. A proporção deve ser de dez partes de água para uma de preparação enzimática. A diluição deve ser realizada momentos antes do uso. A diluição muito antecipada, sobretudo à temperatura ambiente,

pode provocar perda de atividade em particular, se a água for de qualidade duvidosa;

- A preparação é normalmente adicionada ao leite ao final do enchimento do tanque, sempre após a adição de todos os ingredientes;
- Após a adição do coalho, o leite deve ser agitado por não mais que 5 minutos para garantir a distribuição uniforme de toda enzima no leite.

A escolha do coalho a ser utilizado e a dosagem relativa é fundamental para o alcance e a manutenção dos parâmetros tecnológicos de coagulação, que refletem diretamente no rendimento, nas características organolépticas e tipicidade do produto.

COLABORAÇÃO:

João Pedro de M. Lourenço Neto Hans Henrik Knudsen Eduardo Reis Peres Dutra Alencar Moreira de Oliveira Pablo F. Lourenço Leonardo Seccadio dos Santos Nilson Cremonese Junior

PRODUÇÃO:

SACCO Brasil Ltda. <u>Rua Emílio Nucci, 103, Jardim Conceição</u> <u>Sousas - 13.105-080 | Campinas/SP.</u>

(§) saccobrasil.com.br

Publicação trimestral
Tiragem: 3.500
Publicação de distribuição gratuita

Impressão: Master Graf

Fecnologia em Laticínios 4